The VICARBO® screw

Root-shaped ZERAMEX® Implant: The heart of the connection is the VICARBO® screw


A high-strength and form-fit, absolutely stress-free, screwed ceramic-ceramic connection is created using the carbon fibre-reinforced VICARBO® screw. The design of the connection was developed to minimise bacteriological colonisation or deposit. This screw, for which a patent is pending, is unique in dental implantology!

The VICARBO® screw is a precision screw to optimally capture occlusal forces. When tightened, it grips the existing contour of the thread thanks to the significant different hardness of the ceramic and screw. 

This material has already proved its worth in other medical applications (e.g. orthopedics) and is considered to be the material of the future. Aerospace engineers also use carbon fiber reinforced components because of their enormous strength and low weight.

Previous slide
Next slide

High bonding strength is achieved with the new carbon-ceramic technology. The core is the VICARBO® screw made of carbon-fibre-reinforced high-performance threads.

It is distinguished by enormous isoelastic properties and has clear strengths: metal-free, biocompatible according to ISO10993 for long-term implants. Modulus of elasticity: >160 GPa., tensile strength: 2.000 MPa.[82] (Comparison: Titanium grade 5: Modulus of elasticity: 114 GPa., tensile strength: 1,100 MPa.[83])

The continuous carbon fibres modified to suit the shape durably absorb the tensile forces and give the VICARBO® screw its high strength.

Relative tensile strength of VICARBO rod and Alternative Implantable Materials

(all values according to manufacturer’s specifications)

Read more about Vicarbo Technology:

Interview F&E Pascal Wettstein – Vicarbo Technology
Carbon – established in dental implantology

Digitization and implantology with ceramic implants is one of the fastest growing and most innovative areas in dentistry. Intensive research and further development in the areas of material properties and restorative care in particular, have led to implants made of zirconium oxide in addition to titanium implants, becoming a serious factor in dental implantology. Dentalpoint with the ZERAMEX® brand is considered a pioneer of “white implants” and launched the groundbreaking ZERAMEX® P6 innovation in March of 2015. A worldwide unique, 100% metal-free, two piece ceramic implant system with screw connection. The high connection strength required for such a system is achieved by carbon ceramic technology. The core is the Vicarbo screw made of carbon fiber reinforced high-performance PEEK. In the meantime, the further developed system ZERAMEX® XT has already established itself on the market. Representing Dentalpoint with its Zeramex brand, Pascal Wettstein, Head of the Research & Development Department, provides information on what an implant abutment compound is all about and what the future will look like in this matter.
Pascal Wettstein

Pascal Wettstein is an experienced R & D engineer with a profound background in materials science. He has been with Dentalpoint since 2014 and part of the great pioneering work. Before joining Dentalpoint, Pascal Wettstein worked for several years as an engineer in the R & D department of renowned Swiss medtech companies.

Mr. Wettstein, ceramic implants are enjoying an upswing in the dental industry. With a current market share of 2-3%, it is predicted that ceramic implant systems will enjoy a market share of up to 25% by 2022. Dentalpoint is a pioneer in this upswing. With what innovation has the ZERAMEX® brand revolutionized dental implantology?

PWE: Historically, in the past, people had a choice between a one-piece and a two-piece bonded implant system, and that’s where ZERAMEX® started. However, we quickly realized that, for reasons of prosthetic flexibility, a two-prosthetic solution is needed. In implantology with titanium implants, virtually no one-piece systems are used anymore, as these are not easy to supply. So our task was clear that even in metal-free implantology you have to offer a system that is reversibly screwed. We were the first to launch a 100% metal-free and two-piece ceramic implant system that is reversibly screwed. This is the great innovation of Zeramex.

The ZERAMEX® systems are known for Vicarbo, a carbon fiber ceramic technology. Why did you choose the material carbon fiber at ZERAMEX®? What are the properties of this Vicarbo technology?

PWE: Fiber composites and especially carbon fiber composites have very special material properties. They have a very high tensile strength (about twice as high as e.g. titanium grade V) and stiffness, they are chemically resistant and they are anisotropic due to the fibers. This means that in the fiber direction you have different properties than transversely. This can be taken advantage of by controlling the fiber course or placing it in the main load direction(s). 

A classic example is the bicycle fork made of a carbon fiber composite: it is designed to react elastically to longitudinal loads so that it can optimally cushion impacts, etc. Cross or on torsion it is very stiff, as this massively improves the handling of the bike. With an aluminium fork, it is not possible to control the properties in this mass, as this is an isotropic material (the properties are broadly the same in all directions). 

These excellent mechanical properties, combined with low weight, have led to this material being established in a wide range of high-tech industries such as aviation (A380 and Boeing 787), aerospace and racing. 

We also make use of the above-mentioned properties. In this way, we build the screw through the process control in such a way that the main fiber curve lies in such a way that it can withstand high mechanical loads on torsion and pull. The combination of a relatively soft screw with the very hard ceramic also allows us to produce the screw in a slight excess. The screw then nestles in the ceramic thread. This results in a sealing effect. The matrix material in our case is PEEK, which has a long tradition in medical technology.

Zeramex Implant System XT